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Timely overhauls produce in-flight service
reliability greater than the calculated design
reliabilities of the transmission components.
Although necessary for aircraft safety, transmis-
sion overhauls contribute to aircraft expense.
Predictions of the transmission's maintenance needs
at the design stage should enable the development
of more cost-effective and reliable transmissions
in the future.

This work estimates the frequency of overhaul
and the number of transmissions or components
needed to support the overhaul schedule. Two meth-

ods based on the two-parameter Weibull statistical

distribution for component life are used to esti-
mate the time between overhauls. These methoads
predict transmission lives for maintenance sched-
ules which (1} repair the transmission with a com-
plete system replacement or (2) repair only failed
components of the transmission, An example illus-
trates the methods.

INTRODUCTION

Aircraft transmissions include bearings and
gears which have finite fatigue lives with detect-
able failure warnings. The two-parameter Weibull
distribution statistically describes the drive
system bearing and gear life [1-4].

The in-flight service reliability of aircraft
transmissions is much higher than the design reli-
ability of their components. Transmission over-
hauls provide the difference. By monitoring the
onset of potential fatique failures, one can use
just-in-time overhauls to maintain the transmission
economically and reliably [51.

A two-parameter WeibulT distribution provides
the transmission system life model for repairing a
transmission with full-system replacement [§¢Z]'
The sum of the component failure rates predicts the
repair frequency for maintenance with partial-
replacement repair [§¢Q].

Renewal theory 1s a secondary statistical
model that describes the maintenance process. It
estimates the number of replacements needed to
maintain transmission reliability with a specified
maintenance schedule, The theory considers the
ongoing sequence of use, failure onset, repair, and
return to use. For this sequence, renewal theory
predicts the frequency of component replacement and
the number of replacements needed to support the
service maintenance schedule [10-12].
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Confidence theory camplement; thess sfatrer:
with estimates of the likelithcod of the pregic.
tions. Higher confidence levels require more
spare parts to rover a greater range of pa3iiie
situations [11,12].

This work presents these thegrtes and agglres
them to a simple transmission (Fig. b} to shos
their use. Estimates of drive system companen?
failure onset rate and replacement reeds are aise-
tial in design. They allow one tc compare the
worth of different designs from a maintemance ¢35
perspective, and they help assess the cost of agwr.
ating a proposed drive system design.

COMPONENT RELIABILITY

The two-parameter HWeibull distrrbutiaon rs &
statistical function commonly used to describe
fatigue life data. It can describe a variety of
life patterns in which the reliability of a campo-
nent is the complement of its probability of
failure.

<"BEARING 1

\
BEARING 2 -

Fig. 1. Single-mesh transmissian



: In statistics, reliability 1y 4 duuble regs-
tive, Reliability, or the act of surviving, 15 the
state uf not having failed. Statistics count %o

~qle events such as the act ot farbing, A part can
fail only once, whereas it survives for its entire
life, The probability of failure rtor the tao-
parameter Weibull distribution, whieh 14 3 direct
statistic, is

Fald -e 9 0. R th

The derivative of £q., (1) with respec? ta lite
s the probability density function f:

b b-1l )
W ¢ gy d
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The probability density function is a histo-
gram of life failures for a unit population. The
Weibull reliability function can be expressed as 4

‘log reciprocal:
b
1 ' (3)
“‘[R] [vl

In working with the high-reliability range,
the o, life often replaces the characteristic
1ife & as the scaling parameter. In terms of
1, life, Eq. (3} is

1 t Y ) Al
L . 2 (4)
() ol

Even though it is cumbersome, manufacturers
use Eq. (4) as the two-parameter Heibull distribu-

tion of bearings to place 90-percent reliability
lives in the catalogs [13].

‘ In both Eqs. (3) and (4), the log of the reli-
ability reciprocal is proportional to the life
raised to the Weibull slope. Taking the log of
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Substrtuting the probabriel, denssty = 00w
of €q. (2) for the two-paramater telall Sroteino.
tion and inteqrating yields the aell-aniwn ;urms
function [ multiplied by tre  rarg teeys®
life ¢:
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The solid curve 1n Fig. 3 5 ap
ratio of the two-parameter lieibuli me
life equals the characteristic lrse 3t b = 1.3,
drops below the characteristic Tire 23 g mrrnyn
relative value at b = 2.15, amd ther agres..3
back to the characteristic lite as 2 apprralbas
infinity. When b is infimite, the tretrriation
is an impulse with all Fivas 2guat 22 the cnual-
teristic life.

By a similar integration, one can find e
standard deviation of the two-parameter werlull
distribution. The standard deviatign is the Judre
root of the second moment of the gompanent %o
distribution about the mean.
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‘damage in other components.

In terms of the gamma function, the standard devia-
tion of the two-parameter Weibull distribution is

9y« 8 Jr[n R g] . r2[| . rl,] (8)

The standard deviation of a distribution is a
measure of the scatter of the distribution. It is
valuable in estimating a confidence limit for the
average life, e

The broken curve in Fig. 3 is a plot of
the ratio of the standard deviation of the two-
parameter Weibull distribution to its characteris-
tic life versus the Weibull slope. At a slope of
one, the distribution is the exponential distri-
bution, which has a large scatter. As the slope
increases to two, the scatter decreases rapidly and
continues to decrease with increasing slope.

SYSTEM LIFE WITH FULL REPLACEMENT

To model the transmission life based on full
replacement, one must have a life model for the
transmission as a complete system which treats the
system as a single component, The life of a drive
system can be considered to be a strict series
probability model of the lives of its components
(2}. In this mode!, the reliability of the system
R, is the product of the reliabilities of all the
components:

Rg = f[ R, (9)

1w]

The high speed of drive system components and
the spray of loose debris warrant the strict series
probability model. [f any component fails, debris
may be present which could accelerate the fatique
Therefore, the drive
system will need an overhaul to return it to a high
state of reliability when any element fails.

The log of the reciprocal of Eq. (9) is

Ln[nl;] - zn: Ln[‘Rl‘,-] (10)

1*]

and substitution of Eq. (4) into Eq. (10) for each
component yields

1 1 n t b,
O ELC

In Eq. (11), ¢, is the life of the entire drive
system for the system reliability R,. [t is also
the life of each component at the same drive system
reliability R,. For consistency in Eq. (11), all
the component Yives must have the same counting
base of hours,

Equation (11) {s a two-parameter Weibull dis-
tribution only when all the Weibull exponents b,
are equal, However, a two-parameter Weibull dis-
tribution can approximate Eq. (11) quite well.

Equation (12) is the drive system two-
parameter Weibull relationship. It includes the
system rel{ability parameters b, and tq 4.
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The stralght<line relfability relstionshig ot

Eq. (12) can be fit nmrica‘l, (o the more era?
relationship of Eq. (11) with a linear rOTression,
The slope of the fitted straight lire 1% the dreie
system Weibull slope b,, and Oq, t3 the Dpfe 4

which the drive system reliability #  eg.qeis
90 percent on the strafght line. :

SYSTEM LIFE WITH PARTIAL REPLACEMEN!

To model the transmission live Rased um gr-
tial replacement, one can treat the full system a1
a collection of independent components. Separate
analysis of each component will predict the numter
of replacements needed. If no two compoments are

‘repaired at the same overhaul, the masimum numier

of overhauls is equal to the sum of 3al} indt.tcua!l
component replacements. One can estimate "k2 mearn
time between overhauls as the total serurce 2rme
divided by the number of replacements far thrs
component sum repair calculation and for the f.ii-
system repair.

RENEWAL THEQRY

Renewal theory estimates the number of
replacements as a function of the component fariuyre
distribution and its life [10-12]. It assumes tra:
failed components will be replaced just befare the,
fail, which models an unending sequence of use and
repair. Aircraft drive system maintenance foilcws
this pattern closely.

The mean number of failures is the infintte
sum of the probabilities of at least i failures
in the life period ¢. This functicn, M(c), is the
renewal function. It is expressed as

M(e) = Fr(e) « JE MU - x) F(x) dx {13)

The derivative of the renewal functicga with
respect to life is the renewal density function:

m(e) = fi(e) » f; m{e - x) f(x) dx {13)

These equations give the number of veplace-
ments needed to support a maintenance schedule.
Their salution involves a series of convolutien
integrals that can be performed on any failure
distribution. However, the solution, which is an
oscillation of replacement numbers about a straight
line, is not easily obtained. The solid curve of
Fig. 4 shows the renewal function for a companent
with a two-parameter Weibull reliability,

6 = 5000 hr and b = 1.5. Tabulated selutieas te
the renewal function for the two-parameter Weibuli
distribution are available [12]. !

An approximation for the renewal function [11}

is
H H
Mele) = b« v % 1s)
tay s,
The accuracy of this approximatica increases
as ¢ increases, Equation (15) is an asymptote



for the true renewal function of low-scatter dis-
tributions. For high-scatter distributions, it
approximates the true renewal function closely,

The renewal function is the probability of
replacement for a single component. [ts value goes
above one because multiple replacements can occur,
For a set of Q identical components, the total
number of replacements {s the product:

Np = QM(e) (16)

Estimates of replacement inventory need a
margin for variations from the mean, as do repair
frequency estimates. Confidence statistics based
on the renewal standard deviation provide one means
for determining this margin, The broken curve of
Fig. 4 is a plot of the renewal function standard
deviation versus life for the component with a
characteristic life of 5000 hr and a Weibull slope
of 1.5 for which the solid curve of Fig., 4 plots
the renewal mean.

The approximation for the standard deviation
of the renewal function uses the third moment of
the life distribution. For the two-parameter
Weibull distribution, the third moment is

py =[5 OF () -631”[1 . g] (17)

Figure 5 shows the third moment of the two-
parameter Weibull distribution divided by the cube

. of the characteristic life versus the Weibull
. slope.

The approximation for the standard deviation

- ot the renewal function is [11]
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Fig. 4. Renewal function and renewal function
. standard devialion for a two-parameter Weibull
“s . distribution with 8 = 5000 hr,and B = 1.5.

The standard deviation of the remewal fumction
gives 4 measure of the scatter in replacement need:
rom one sample to the next. Estimetes of replace-
ment fnventory need a margin for variatioms from
the mean, as repair frequency estimates do. Comfu.
dence statistics provide one means for determining
this margin. - C

CONFIDENCE STATISTICS

In predicting replacement rates and marrte-
nance inventories, direct theory prosides mesn cr
*average* estimates. These estimates come Ffrom B
statistics of a universal population, With encygm
cases, they will be the true average +alues.

In any real situation, the number of drrve
systems under service is a limited sasple. C(onfr-
dence statistics estimate how differently a small
sample may behave from its universal population.

It uses the standard deviation of the universal
failure distribution and the sample size to esl:-
mate the mean of the sample. Confidence intervaels
are shown by the broken lines in Fig. 2.

For many samples of the same size, the mean of
the samples has a normal distributican about the
overall mean. The standard deviation of the means
is

. of (19)

VT

where Q is the size of the sample.

In reliability predictions, the lower confi-
dence bound is valuable in aircraft applicatiaens.
This confidence distribution estimates the life at
which a large percentage of the samples of a given
set will survive. For a high confidence, this life
is less than the mean life for the entire popula-
tion. For a 90-percent confidence,
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Table 1. - Single-mesh transmission properties

Load, | 10-percent | 10-percent | Average | Stasdard
kN ‘He. ife, 1ife, dc:i'niou
1o* 190 ty, of life,
10° cycles br hr 9.
hr
Bearing 1 4.1 317 2640 16 187 13 570
Bearing 2 10.3 578 4820 29 554 24 776
Pinion 5.8 298 2486 5 426 2 324
Bearing 3 10.3 868 7230 44 330 24 460
Bearing 4 4.1 475 3960 24 280 20 097
Gear 5.8 380 3170 6 920 2 963
Transmission 127 1060 3 990 2 600

Since the behavior of samples differs from the
behavior of the *ideal* distribution, confidence
estimates help one to see the effects of sampie
size on the life and replacement estimates,

EXAMPLE

For the single-mesh transmission shown in
Fig. 1, the 90-percent reliability lives for the
bearings and gears are shown in Table 1. The
Weibull slope for the bearings is 1.2, and for the
gears is 2.5. For a fleet of Q = 50 aircraft, we
would like to estimate the number of overhauls in
the first 10 000 hr of service and the number of
replacement components needed to support these
overhauls. Two types of overhaul are treated -
full replacement and failed-component replacement
only. All estimates will be with 90-percent confi-
dence for the 50 aircraft sample size. From
Eq. (6), the average lives were determined for each
component. From Eq. (8), the standard deviations
for each component were determined. The results
are shown in Table 1.

Full Replacement

To treat the transmission as a complete system
undergoing full-replacement repair, one can use the
two-parameter Weibull system model of Eq. (12).

The parameters b, and ¢,, . for Eq. ?12) come
from a least squares fit to'éq. (11). The two-
parameter Weibull slope is b, = 1,57 for the
transmission, and the system §0-percent reliability
life is 0,9, = 1060 hr. From Eq. (3), the trans-
mission characteristic Yife is & = 4440 hr. Ffor
these data, the transmission average life is

t,, = 3990 hr with a standard deviation of

o¢ = 2600 hr,

The renewal function can estimate the number
of transmissions needed for full replacement in a
continual sequence of failure warning, repair, and
return to service for the 50 aircraft. For an
average life of 3990 hr and a standard deviation
1ife of 2600 hr, Eqs. (15) and (16) give the total
numger of replacements in the period from Q to
t r.

From Eq. (17), the third moment of the trans-
missfon 1ife distribution is = 1.62x10'% hed,
and Eq. (18) gives the standard deviation of the
renewal function for the transmission.

Equations (18) and (19) give the standard
deviation of the number of replacements in the
qeriod from 0 to ¢. Finally, a relationship simi-

‘Yar to Eq. (20) gives the replacement estimate for

complete transmissions with a 90-percent confidence

‘that the replacements will be less.

For the first 10 000 hr of operatiom, this
procedure estimates an average number of []]
replacements for the 50 aircraft. A confidence
Timit of 90 percent boosts this estimate to 12!
transmission replacements for 500 000 fleet ser.ice
hours. This represents a mea) time between guer-
hauls of 4130 hr and a total spare parts require-
ment of 726 parts.

Partia) Replacement

When only the failing components are replacad,
the renewal function can estimate the number of
replacements needed, also. Applying the calcula-
tions of this procedure for each of the six compc-
nents in the transmission estimates the numder of
components needed to support a partial-repair main-
tenance schedule with a 90-percent confidence.

Table 2 summarizes these calculatiens for the
four bearings and two gears in the transmissiom.
Adding the total number of components that renewak
theory estimates will need to be replaced yields 7C
bearings and 135 gears, for a total of 207 compe-
nents. This total of 207 spare parts is signifis
cantly less than the 726 parts required by the 11
full-transmission replacements required of the
other service procedure.

If each component failure required its cwn
overhaul, then 207 overhauls would be required with
the same 90-percent confidence as used for the
full-replacement calculations. Dividing the
500 000 fleet service hours by the maximum nuaber
of 207 overhauls yields an estimate for the mean
time between overhauls equal to 2420 hr. This is
1710 hr less than the mean time between overhauls
for full-transmission replacement because it dees
not consider repair of components near failure in a
maintenance session, ’

By only replacing the failed components, one
would need 86 more overhauls, but 519 less parts.

Table 2. - 10 000-hr repair estimates
for 50 transmissions

Transmission Replacements required
component Mean | Standard | 90-perceat
deviation | confidence
Bearing 1 23 5.2 30
Bearing 2 9 4.1 15
Pinion 12 4.7 18
Bearing 3 q 3.6 8
Bearing 4 13 4.4 19
Gear 82 4.3 7
Total 13 N




. ment components needed are presented.

- iliustrate the methods.
- timing and spare-part requirements are made in the

The same high relfab{lity would be present for both
maintenance procedures because of the on-board
failure monitoring system. These estimates are for
cost and scheduling purposes only.

SUMMARY OF RESULTS

Two methods of estimating the time between
transmission overhauls and the number of replace-
The first
treats full replacement of failed transmissions,
whereas the second treats replacement of failed
components only. Confidence statistics are applied
to both methods to improve the statistical estimate
of sample behavior,

The method to predict overhaul timing with
full replacement is based on a two-parameter
Weibull system 1ife model, The relationship
between the system life model and the component
Vife models is presented. In addition, formulas
for the mean and standard deviation of the two-
parameter Weibull distribution are given.

Renewal theory is presented as a tool to esti-

. mate the number of replacements in a transmission

undergoing a consistent maintenance procedure. The
theory is useful for estimating replacements for
both full and partial transmission-replacement
procedures. Approximation formulas are given for
the mean and standard deviations of the renewal
function. These approximations are valid for two-
parameter Weibull distribution lives amongst
others. Formulas for sample replacement numbers
are given in terms of the renewal function.
Single-sided confidence theory is presented
for the replacement number and overhaul timing
estimates. A transmission example is presented to
Comparisons of overhaul

example between full-transmission replacement and
partial component-replacement overhauls, High
reliability is assured for the transmissions in

" both cases by the on-board monitoring system.

NOMENCLATURE

b Weibull slope

e base of the natural log

F probability distribution function (probabil-
ity of failure)

f probability density function

Ln natural log

t life, hr

M renewal function

M approximate renewal function

MTTF mean time to failure
m renewal density function

N number of replacements

Q sample size

R reliability (probability of survival)
X integration time variable, hr

Zy0 number of standard deviations from the mean
which cuts off a 10-percent population tail

gamma function

8 characteristic life, hr
Py third moment of a probability density

function

0 standard deviation
aq standard deviation of Weibu!t fuection
One standard deviation of renesat fuscires

Subscripts:

av average or mean
index

n number of components
system

index value

10 10-percent failure, 90-percent
reliability

90 90-percent confidence
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